由于是在z-1处展开,所以先要把所有的z变成z-1
z²sin(1/(z-1))
=(z²-2z+1+2z-2+1)sin(1/(z-1))
=[(z-1)²+2(z-1)+1]sin(1/(z-1))
=(z-1)²sin(1/(z-1))+2(z-1)sin(1/(z-1))+sin(1/(z-1))(1)
下面展开sin(1/(z-1))
sin(1/(z-1))=Σ{n=0→+∞}1/[(2n+1)!(z-1)^(2n+1)]
代入(1)式得:(为方便这里观看,我一项一项做)
(z-1)²sin(1/(z-1))
=(z-1)²Σ{n=0→+∞}1/[(2n+1)!(z-1)^(2n+1)]
=Σ{n=0→+∞}1/[(2n+1)!(z-1)^(2n-1)]
=(z-1)+Σ{n=1→+∞}1/[(2n+1)!(z-1)^(2n-1)]
=(z-1)+Σ{n=0→+∞}1/[(2n+3)!(z-1)^(2n+1)]
2(z-1)sin(1/(z-1))
=2(z-1)Σ{n=0→+∞}1/[(2n+1)!(z-1)^(2n+1)]
=Σ{n=0→+∞}2/[(2n+1)!(z-1)^(2n)]
这样得原式=(z-1)+Σ{n=0→+∞}1/[(2n+3)!(z-1)^(2n+1)]
+Σ{n=0→+∞}2/[(2n+1)!(z-1)^(2n)]
+Σ{n=0→+∞}1/[(2n+1)!(z-1)^(2n+1)]
然后自己把这三个求和合并成一个,这里打太不方便了.