(1)由已知可得an+1+1=2an+2=2(an+1),
故可得数列{an+1}是2为公比的等比数列;
(2)由(1)可知数列{an+1}的公比为2,首项为3
故可得an+1=3×2n-1,故an=3×2n-1-1;
(3)由(2)可得n(an+1)=3n×2n-1,
故数列n(an+1)的前n项和
Sn=3(1×20+2×21+3×22+…+n×2n-1)①
两边同乘以2可得:
2Sn=3(1×21+2×22+3×23+…+n×2n)②
①-②可得:-Sn=3(1+21+22+23+…+2n-1-n×2n)
=3(1−2