維基百科上是这样记述的:自然數,可以是指正整數(1,2,3,4...),亦可以是非負整數(0,1,2,3,4...).例如數論通常用前者,而集合論和電腦科學則多數使用後者.認為自然數不包含零的其中一個理由是因為人們(尤其是小孩)在開始學習數字的時候是由「一、二、三...」開始,而不是由「零、一、二、三...」開始,因為這樣是很不自然的.……歷史與0的定性自然數由數數目而起.古希腊人最早研究其抽象特性,當中畢達哥拉斯學派更視之為宇宙之基本.其它古文明也對其研究作出極大貢獻,尤其以印度對0的接受,為人稱道.零早於公元前400年被巴比倫人用作數碼使用.瑪雅人於公元200年將零視為數字,但未與其它文明有所交流.現代的觀念由印度學者Brahmagupta於公元628年提出,經阿拉伯人傳至歐洲.歐洲人開始時仍對零作為數字感到抗拒,認為零不是一個“自然”數.19世紀末,集合論者給自然數一個較嚴謹的定義.據此定義,把零(對應於空集)包括於自然數內更為方便.邏輯論者及電算機科學家,接受集合論者的定義.而其他一些數學家,主要是數論學家,則依從傳統把零拒之於自然數之外.……另外,亚洲的日本在小学到高中的教科书上仍然是“自然数从1开始”的.下面再补充一段以前风月舞者网友的回答:转自人教论坛:随着九年义务教育小学数学教材(试用修订版)的陆续使用,我们接到一些小学数学教师、家长和学生的来信、来电,询问0是否是自然数的问题.现予以解答如下:从历史上看,国内外数学界对于0是不是自然数历来有两种观点:一种认为0是自然数,另一种认为0不是自然数.建国以来,我国的中小学教材一直规定自然数不包括0.目前,国外的数学界大部分都规定0是自然数.为了国际交流的方便,1993年颁布的《中华人民共和国国家标准》(GB3100~3102-93)《量和单位》(11-2.9)第311页,规定自然数包括0.所以在近几年进行的中小学数学教材修订中,我们的教材研究编写人员根据上述国家标准进行了修改.即一个物体也没有,用0表示.0也是自然数.但是,在小学阶段的“整除”部分,仍然不考虑自然数0,因而在约数、倍数等概念中都不包括0.另外,一般情况下我们不说数0是几位数,所以最小的一位数是1.