设长方体ABCD-A1B1C1D1,长,宽,高分别为a,b,c;*是指乘
α,β,γ分别为角CA1B1,CA1A,CA1D,则满足Cosα^2+cosβ^2+cosγ^2=1
(a^2/(a^2+b^2+c^2)+b^2/(a^2+b^2+c^2)+c^2/(a^2+b^2+c^2)=1)
u=tanαtanβtanγ=根号(b^2+c^2)/a*根号(b^2+a^2)/c*根号(c^2+a^2)/b
>=根号(2bc)*根号(2ac)*根号(2ab)/(abc)=2根号2
(当且仅当a=b=c时"="成立)