由矩形ABCD中,AB=4,AD=3,可得对角线AC=BD=5.
依题意画出图形,如右图所示.
由轴对称性质可知,∠PAF+∠PAE=2∠PAB+2∠PAD=2(∠PAB+∠PAD)=180°,
∴点A在菱形EFGH的边EF上.同理可知,点B、C、D均在菱形EFGH的边上.
∵AP=AE=AF,∴点A为EF中点.同理可知,点C为GH中点.
连接AC,交BD于点O,则有AF=CG,且AF∥CG,
∴四边形ACGF为平行四边形,
∴FG=AC=5,即菱形EFGH的边长等于矩形ABCD的对角线长.
∴EF=FG=5,
∵AP=AE=AF,
∴AP=12