急``````求教``高中数学````极限题
用数学归纳法证明:1×1!+2×2!+3×3!+`````+n×n!=(n+1)!-1(n∈N*)
证明:假设当n=k(k∈N*)时等式成立,即
1×1!+2×2!+3×3!+`````+k×k!=(k+1)!-1,
当n=k+1时,有
1×1!+2×2!+3×3!+`````+k×k!+(k+1)(k+1)!
=(k+1)!-1+(k+1)(k+1)!
=(k+1)![1+(k+1)]-1
=(k+2)(k+1)!-1
=(k+2)!-1
所以n=k+1时等式成立.
(k+2)(k+1)!-1怎么变成(k+2)!-1的