(1)∵a1=1,a2=2,a3=a2-1,a4=2a3=2,∴猜测a2006=2.
(2)由a2n=qa2n-1,a2n+1=a2n+d(q∈R,d∈R,q≠0)得a2n+1=qa2n-1+d,当d=0时,显然a2n+1=qa2n-1,{a2n-1}是等比数列,当d≠0时,因为a1=1只有a2n-1=1时,{a2n-1}才是等比数列,由a2n+1=qa2n-1+d得q+d=1,即d=0,q≠0,或q+d=1由a2n=qa2n-1,a2n-1=a2n-2+d得a2n=qa2n-2+d,得a2n=qa2n-2+qd(n≥2),当q=1,a2n=a2n-2+d(n≥2),显然{a2n}是等差数列,当q≠1时,a2=qa1=q,只有a2n=q时,{a2n}才是等差数列,由a2n+2=q(a2n+d)得,q+d=1即q=1,q+d=1,综上所述:q+d=1.