将(3x+1)的5次方展开=(3x)^5+c(5,1)(3x)^4+c(5,2)(3x)^3+c(5,3)(3x)^2+c(5,4)(3x)+1
对应项(3x)^5=a×x的5次方,c(5,1)(3x)^4=b×x的4次方,c(5,2)(3x)^3=c×x的3次方,c(5,3)(3x)^2=d×x的2次方,c(5,4)(3x)=e×x,f=1
当x=-1时,(3x+1)的5次方=-a+b-c+d-e+f=(-2)^5=-32
将-a+b-c+d-e+f=-32两边同乘以-1得a-b+c-d+e-f=32