题应为:
△ABC中,AD⊥BC于D,∠ABC=2∠C.求证:AC^2=AB^2+AB·BC
在DC上,取一点E,使DE=BD
易证明:三角形ABD≌三角形AED
AB=AE,∠ABC=∠AED,BD=DE
∠AED=∠C+∠EAC
∠ABC=2∠C
∠C=∠EAC
AE=CE
CE=AB
根据勾股定理可得:
AC^2=AD^2+CD^2
AB^2=AD^2+BD^2
AC^2-AB^2=CD^2-BD^2
=(CD+BD)(CD-BD)
=BC(CD-DE)=BC*CE=BC*AB
AC^2=AB^2+AB*BC