当前位置 :
离散数学(子群)设f和g都是到的群同态,且H={x|x∈G1,f(x)=g(x)},证明H是G1的子群.
1人问答
问题描述:

离散数学(子群)

设f和g都是到的群同态,且H={x|x∈G1,f(x)=g(x)},证明H是G1的子群.

任守榘回答:
  证明有定义知H包含于G1对于任意的a,b∈H,有f(a)=g(a),f(b)=g(b)∵f和g都是同态映射,所以必有f(b-¹)=f(b)-¹,g(b-¹)=g(b)-¹现因f(b)=g(b),故有f(b)-¹=g(b)-¹即有f(b-¹)=...
数学推荐
数学推荐
最新更新
优秀数学推荐
热门数学
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞