取数轴上的区间[0,a],两点的坐标为随机变量A,B,
则A,B相互独立,都服从[0,a]上的均匀分布,
分布函数为F(x)=0,xa时.
两点距离X=|A-B|=max(A,B)-min(A,B)
EX=Emax(A,B)-Emin(A,B).
max(A,B)的分布函数G(x)=[F(x)]^2,由此可求出Emax(A,B)=2a/3.
min(A,B)的分布函数H(x)=1-[1-F(x)]^2,由此可求出Emin(A,B)=a/3.
EX=Emax(A,B)-Emin(A,B)=a/3.