根据最后四个箱子都各有16个小球,所以小球总数为16×4=64个,
最后一次分配达到的效果是,从D中拿出一些小球,使A、B、C中的小球数翻倍,则最后一次分配前,A、B、C中各有小球16÷2=8个,由于小球的转移不改变总数,
所以最后一次分配前,D中有小球64-8-8-8=40个;于是得到D被分配前的情况:A8,B8,C8,D40;
倒数第二次分配达到的效果是,从C中拿出一些小球,使A、B、D中的小球数翻倍,则倒数第二次分配前,A、B中各有小球8÷2=4个,D中有40÷2=20个,总数不变,
所以最后一次分配前,C中有小球64-4-4-20=36个,于是得到C被分配前的情况:A4,B4,C36,D20,
同样的道理,在B被分配前,A中有小球4÷2=2个,C中有小球36÷2=18个,D中有小球20÷2=10个,B中有小球64-2-18-10=34个,即B被分配前的情况:A2,B34,C18,D10;
再推导一次,在A被分配前,B中有小球34÷2=17个,C中有小球18÷2=9个,D中有小球10÷2=5个,B中有小球64-17-9-5=33个,即A被分配前的情况:A33,B17,C9,D5;
而A被分配前的情况,就是一开始的情况,所以一开始,A箱子装有最多的小球,数量为33个;
答:开始时装有小球最多的是A箱,其中装有33小球个;
故答案为:A,33.