是(x-3y+2z)/(x-5y+4z)吧?!
设x/2=y/5=z/7=t,x=2t,y=5t,z=7t,
所以(x-3y+2z)/(x-5y+4z)=(2t-15t+14t)/(2t-25t+28t)=1/5.
什么第二种?合分比定理?如下:由x/2=y/5=z/7,得x/2=-3y/(-15)=2z/14=(x-3y+2z)/(2-15+14)=x-3y+2z;又由x/2=y/5=z/7,得x/2=-5y/(-25)=4z/28=(x-5y+4z)/(2-25+28)=(x-5y+4z)/5。两式相除,得1=(x-3y+2z)/[(x-5y+4z)/5],即(x-3y+2z)/(x-5y+4z)=1/5。