当前位置 :
如何用辗转相除法求两个数的最小公倍数(步骤)
1人问答
问题描述:

如何用辗转相除法求两个数的最小公倍数(步骤)

唐桂明回答:
  在数学中,辗转相除法,又称欧几里得算法,是求最大公约数的算法.辗转相除法首次出现于欧几里得的《几何原本》(第VII卷,命题i和ii)中,而在中国则可以追溯至东汉出现的《九章算术》.两个整数的最大公约数是能够同时整除它们的最大的正整数.辗转相除法基于如下原理:两个整数的最大公约数等于其中较小的数和两数的差的最大公约数.例如,252和105的最大公约数是21(252=21×12;105=21×5);因为252−105=147,所以147和105的最大公约数也是21.在这个过程中,较大的数缩小了,所以继续进行同样的计算可以不断缩小这两个数直至其中一个变成零.这时,所剩下的还没有变成零的数就是两数的最大公约数.由辗转相除法也可以推出,两数的最大公约数可以用两数的整数倍相加来表示,如21=5×105+(−2)×252.这个重要的等式叫做贝祖等式.辗转相除法最早出现在欧几里得的几何原本中(大约公元前300年),所以它是现在仍在使用的算法中最早出现的.这个算法原先只用来处理自然数,但在19世纪,辗转相除法被推广至其他类型的数,如高斯整数和一元多项式.自此,现代抽象代数概念如欧几里得整环开始出现.后来,辗转相除法又扩展至其他数学领域,如纽结理论和多元多项式.辗转相除法有很多应用,它甚至可以用来生成全世界不同文化中的传统音乐节奏.在现代密码学方面,它是RSA算法(一种在电子商务中广泛使用的公钥加密算法)的重要部分.它还被用来解丢番图方程,寻找满足中国剩余定理的数,或者求有限域的倒数.辗转相除法还可以用来构造连分数,在施图姆定理和一些整数分解算法中也有应用.辗转相除法是现代数论中的基本工具.辗转相除法处理大数时非常高效,它需要的步骤不会超过较小数的位数(十进制下)的五倍.加百利·拉梅(GabrielLamé)于1844年证明了这点,开创了计算复杂性理论.
最新更新
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞