∫1/[x√(1-x²)]dx
=∫1/[x*√[x²(1/x²-1)]dx
=∫1/[x*|x|*√(1/x²-1)]dx
=∫1/[x²√(1/x²-1)]dx
=-∫1/√[(1/x)²-1]d(1/x)
=-ln|1/x+√(1/x²-1)|+C
=ln|x/[1+√(1-x²)]|+C
或设x=sinθ,dx=cosθdθ,θ∈[-π/2,0)U(0,π/2]
∫1/[x√(1-x²)]dx
=∫1/[sinθ*|cosθ|]*cosθdθ
=∫1/(sinθ*cosθ)*cosθdθ
=∫cscθdθ
=-ln|cscθ+cotθ|+C
=-ln|1/x+√(1-x²)/x|+C
=ln|x/[1+√(1-x²)]|+C
嗯,∫1/√(x²-1)dx=ln|x+√(x²-1)|+C可用x=secθ证明。
那就哦了我就是想知道不用积分怎么做积分表的话就很简单了还是谢谢你了