当前位置 :
证明当|x|很小时,下列近似式成立:即(当x→0时误差是x的高阶无穷小)e^x≈1+x因为我是自学高数(一),所以有些地方还不是理解很懂,对于这道题不知道怎么下手,请拟出解题思路.
1人问答
问题描述:

证明当|x|很小时,下列近似式成立:即(当x→0时误差是x的高阶无穷小)e^x≈1+x

因为我是自学高数(一),所以有些地方还不是理解很懂,对于这道题不知道怎么下手,请拟出解题思路.

马训鸣回答:
  书上应该讲了重要的基本极限(1+x)^(1/x)=e(当x→0)或x→无穷,(1+1/x)^x=e   那么用左边除以右边,若当x→0,极限为1,则说明左边和右边在x→0时是等价无穷小,命题即得证.左右两边同乘方(1/X),相除,得e/[(1+x)^(1/x)]=e/e=1,所以原式成立.
最新更新
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞