(1)
A1=1
A2=1/3*S1=1/3*A1=1/3
A3=1/3*S2=1/3*(A1+A2)=4/9
A4=1/3*S3=1/3*(A1+A2+A3)=16/27
A(n+1)=1/3Sn
=>Sn=3*A(n+1)
=>An=Sn-S(n-1)=3(A(n+1)-A(n)
=>A(n+1)=4/3*An
=>An=A1*(4/3)^(n-1)=(4/3)^(n-1)
(2)
A2+A4+...+A(2n)=4/3*(A1+A2+...A(2n-1))
=>
S(2n)=A1+A2+..+A(2n)=(1+3/4)*(A2+A4+...+A(2n))
=>A2+A4+..+A(2n)=4/7*S(2n)
=4/7*(1-(4/3)^(2n))/(1-4/3)
=12/7*(4/3)^(2n)-12/7