当前位置 :
零是数学史上的一大发明,其意义非同小可。首先,零代表“无”,没有“无”何来“有”?因此零是一切数之基础。其次,没有零就没有进位制,没有进位制就难以表示大数,数学就
1人问答
问题描述:

零是数学史上的一大发明,其意义非同小可。首先,零代表“无”,没有“无”何来“有”?因此零是一切数之基础。其次,没有零就没有进位制,没有进位制就难以表示大数,数学就走不了多远。零的特点还表现在其运算功能上,任何数加减零,其值不变;任何数乘以零,得零;任何非零数除以零,得无限大;零除以零,得任何数。零的原型是什么?是“一无所有”还是“四大皆空”?

零和自然数以及带负号的自然数统称为整数。以零为中心,将所有的整数从左到右依次等距排列,然后用一根水平直线将它们连起来,这就是“数轴”。每个整数对应于数轴上的一个点,这些点以等距离互相分开。你看!负数和正数分列左右如雁翅般排开,零据中央,颇有王者气象。

分数的引入解决了不能整除的困难,例如1÷3=1/3。分数当然也有原型,例如三人平分一个西瓜,每人得三分之一。

数轴上相邻两个整数之间可以插入无限多个分数以填充数轴上的空白,数学家一度认为这下子总算把整个数轴填满了。换句话说,所有的数都已被发现了。其实不然?有些数就根本无法以整数或分数来表示,最著名的就是圆周率,分数只能表示其近似值而非准确值。人们将分数化为十进位小数以后,发现有两种情况:一种是有限位小数。便如1/2=0.5;另一种是无限循环小数,例如1/3=0.33333…两者虽貌似不同,但都包含有限的信息,因为循环部分只是重复原有的,并不包含新的信息。圆周率则根本不同,3.14159265358979323846…既不循环,也无终结,所以包含着无限的信息。想想看!北京图书馆里浩如烟海的藏书所包含的信息虽然极多,但仍是有限的,而圆周率却包含着无限的信息,怎能不令人惊叹!数学家将像圆周率那样无法用整数或分数表示的数秒为“无理数”,无理者,不讲道理也!不知道为什么圆周率背了这么个恶名?我曾写过一首题为《圆周率》的小诗为之抱屈,不妨引其中最后一段以博读者一粲:

……

像一篇读不完的长诗

既不循环也不枯竭

无穷无尽永葆常新

数学家称之为无理数

诗人赞之为有情人

道是无理却有情

天长地久有时尽

此率绵绵无绝期

小题1:第一自然段文中说“零是数学史上的一大发明,其意义非同小可”,请归纳“零”的意义。(3分)

③ &n

沈宇纲回答:
  小题1:①零是一切数的基础②零是进位制的前提③零具有运算功能小题2:无理数是无限不循环小数。小题3:因为圆周率是一个无限不循环小数,没有规则,没有穷尽。小题4:打比方/作比较/举例子/引用化用/分类别。   
数学推荐
最新更新
优秀数学推荐
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7