当前位置 :
【用数学归纳法证明:1^2+2^2+…+n^2=n(n+1)(2n+1)/6(n是正整数).】
1人问答
问题描述:

用数学归纳法证明:1^2+2^2+…+n^2=n(n+1)(2n+1)/6(n是正整数).

刘翰宇回答:
  当n=1时,左边=1^2=1右边=1*(1+1)*(2+1)/6=1相符;设n=k时成立即:1^2+2^2+…+k^2=k(k+1)(2k+1)/6则1^2+2^2+…+k^2+(k+1)^2=k(k+1)(2k+1)/6+(k^2+2k+1)=(2k^3+3k^2+k+6k^2+12k+6)/6=(k+1)(k+2)(2k+3)/6=(k+1)[(k+1)+1...
最新更新
优秀数学推荐
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞