当前位置 :
用二项式定理证明当n大于等于5时,2^n>n^2
1人问答
问题描述:

用二项式定理证明当n大于等于5时,2^n>n^2

胡文军回答:
  证明:因为n≥5,所以n-2≥3.所以由二项式定理,2^(n-2)=(1+1)^(n-2)=1+(n-2)+(n-2)(n-3)/2+...>(n-1)+(n-2)(n-3)/2.所以2^n-n^2=4*2^(n-2)-n^2>4(n-1)+2(n-2)(n-3)-n^2=n^2-6n+8=(n-3)^2-1....
数学推荐
最新更新
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞