1、-1/8p^3-1/64q^3=(-1/2p)^3+(-1/4q)^3=(1/2p+1/4q)(1/8pq-1/4p^2-1/16q^2)2、1/216x^3y^3+1/27c^3=(1/6xy)^3+(1/3c)^3=(1/36x^2y^2-1/18xyc+1/9c^2)3、xy^3+x^4=x(y^3+x^3)=x(x+y)(x^2-xy+y^2)4、a^2(m+n)^3-a^2b^3=a^2[(m+n)^3-b^3]=a^2(m+n-b)[(m+n)^2+b(m+n)+b^2]5、y^2(x^2-2x)^3+y^2=y^2[(x^2-2x)^3+1]=y^2(x^2-2x+1)[(x^2-2x)^2-(x^2-2x)+1]=y^2(x-1)^2[(x^2-2x)^2-(x^2-2x)+1]6、x^6-y^6-2x^3+1=(x^3-1)^2-(y^3)^2=(x^3-1+y^3)(x^3-1-y^3)7、x^(n+3)-x^n*y^3=x^n*x^3-x^n*y^3=x^n(x^3-y^3)=x^n(x-y)(x^2+xy+y^2)8、a^(n+2)+a^(n+1)b-6a^n*b^2=a^n*a^2+a^n*ab-6a^n*b^2=a^n(a^2+ab-6b^2)=a^n(a-2b)(a+3b)