当前位置 :
关于直线与圆的方程的一道数学题已知圆X^2+Y^2+X-6Y+m=0与直线X+2Y-3=0相交于P,Q两点,O为坐标原点,问是否存在实数m使得OP*OQ=0(OP,OQ为向量,上面有箭头标志,我打不出来)若存在求出m的值,若不存
1人问答
问题描述:

关于直线与圆的方程的一道数学题

已知圆X^2+Y^2+X-6Y+m=0与直线X+2Y-3=0相交于P,Q两点,O为坐标原点,问是否存在实数m使得OP*OQ=0(OP,OQ为向量,上面有箭头标志,我打不出来)若存在求出m的值,若不存在,请说明理由.

刘爱忠回答:
  OP*OQ=0,说明OP垂直于OQ.同时,P、Q是圆上的点,可与直线方程联立.设两交点为(3-2y1,y1),(3-2y2,y2),由OP*OQ=0,可得,(3-2y1)*(3-2y2)+y1*y2=0;即9-6(y1+y2)+5y1*y2=0.(1).直线方程与圆方程联立后,5y^2-20y+12...
数学推荐
数学推荐
最新更新
热门数学
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞