十字相乘法虽然比较难学,但是一旦学会了它,用它来解题,会给我们带来很多方便,以下是我对十字相乘法提出的一些个人见解。1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。2、十字相乘法只适用于二次三项式类型的题目。3、十字相乘法比较难学。5、十字相乘法解题实例:1)、用十字相乘法解一些简单常见的题目例1把m2+4m-12分解因式分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题因为1-21╳6所以m2+4m-12=(m-2)(m+6)例2把5x2+6x-8分解因式分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。当二次项系数分为1×5,常数项分为-4×2时,才符合本题因为125╳-4所以5x2+6x-8=(x+2)(5x-4)例3解方程x2-8x+15=0分析:把x2-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。因为1-31╳-5所以原方程可变形(x-3)(x-5)=0所以x1=3x2=5例4、解方程6x2-5x-25=0分析:把6x2-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。因为2-53╳5所以原方程可变形成(2x-5)(3x+5)=0所以x1=5/2x2=-5/32)、用十字相乘法解一些比较难的题目例5把14x2-67xy+18y2分解因式分析:把14x2-67xy+18y2看成是一个关于x的二次三项式,则14可分为1×14,2×7,18y2可分为y.18y,2y.9y,3y.6y解:因为2-9y7╳-2y所以14x2-67xy+18y2=(2x-9y)(7x-2y)例6把10x2-27xy-28y2-x+25y-3分解因式分析:在本题中,要把这个多项式整理成二次三项式的形式解法一、10x2-27xy-28y2-x+25y-3=10x2-(27y+1)x-(28y2-25y+3)4y-37y╳-1=10x2-(27y+1)x-(4y-3)(7y-1)=[2x-(7y-1)][5x+(4y-3)]2-(7y–1)5╳4y-3=(2x-7y+1)(5x+4y-3)说明:在本题中先把28y2-25y+3用十字相乘法分解为(4y-3)(7y-1),再用十字相乘法把10x2-(27y+1)x-(4y-3)(7y-1)分解为[2x-(7y-1)][5x+(4y-3)]解法二、10x2-27xy-28y2-x+25y-3=(2x-7y)(5x+4y)-(x-25y)-32-7y=[(2x-7y)+1][(5x-4y)-3]5╳4y=(2x-7y+1)(5x-4y-3)2x-7y15x-4y╳-3说明:在本题中先把10x2-27xy-28y2用十字相乘法分解为(2x-7y)(5x+4y),再把(2x-7y)(5x+4y)-(x-25y)-3用十字相乘法分解为[(2x-7y)+1][(5x-4y)-3].例7:解关于x方程:x2-3ax+2a2–ab-b2=0分析:2a2–ab-b2可以用十字相乘法进行因式分解x2-3ax+2a2–ab-b2=0x2-3ax+(2a2–ab-b2)=0x2-3ax+(2a+b)(a-b)=01-b2╳+b[x-(2a+b)][x-(a-b)]=01-(2a+b)1╳-(a-b)所以x1=2a+bx2=a-b