1、
∫(x+2)dx/√(x²-2x+4)
=(1/2)∫(2x-2+6)dx/√(x²-2x+4)
=(1/2)∫(2x-2)dx/√(x²-2x+4)+3∫dx/√(x²-2x+4)
=(1/2)∫d(x²-2x+4)/√(x²-2x+4)+3∫dx/√[(x-1)²+3]
=(1/2)*2√(x²-2x+4)+3∫d(x-1)/√[(x-1)²+(√3)²]
=√(x²-2x+4)+3ln|x-1+√[(x-1)²+3]|+C
2、
∫dx/(1+x²)²,u=tanθ,du=sec²θdθ
=∫sec²θdθ/sec^4θ
=∫cos²θdθ
=(1/2)∫(1+cos2θ)dθ
=(1/2)(θ+1/2*sin2θ)+C
=(1/2)[x/(1+x²)+arctanx]+C
3、
∫dx/(3+sin²x)
=∫dx/[3+(1-cos2x)/2]
=2∫dx/(7-cos2x),y=2x,dy=2dx
=∫dy/(7-cosy),u=tan(y/2),dy=2du/(1+u²),cosy=(1-u²)/(1+u²)
=∫du/(3+4u²)
=(1/4)∫du/(u²+3/4)
=(1/4)∫du[u²+√(3/4)²]
=(1/4)*[1/√(3/4)]*arctan[u/√(3/4)]+C
=(1/4)*(2/√3)*arctan(2u/√3)+C
=(1/2√3)*arctan(2tan(x/2)/√3)+C
=[arctan(2tanx/√3)]/(2√3)+C
4、
∫dx/sin²√x,u=√x,dx=2udu
=2∫ucsc²udu
=-2∫ud(cotu)
=-2ucotu+2∫cotudu
=-2ucotu+2∫1/sinudsinu
=-2ucotu+2ln|sinu|+C
=2ln|sin√x|-2√x*cot√x+C
5、
∫(x-cosx)dx/(1+sinx)
=∫(x-cosx)(1-sinx)dx/[(1+sinx)(1-sinx)]
=∫(x-cosx-xsinx+sinxcosx)dx/cos²x
=∫xsec²xdx-∫secxdx-∫xsecxtanxdx+∫tanxdx
=∫xdtanx-∫secxdx-∫xdsecx+∫tanxdx
=(xtanx-∫tanxdx)-∫secxdx-(xsecx-∫secxdx)+∫tanxdx
=xtanx-xsecx+C
=x(tanx-secx)+C