当前位置 :
【大学数学,采纳即追加:设x^2+px+q和x^2+rx+s都是整系数多项式,且它们有一个公根α不是整数.试证p=r,q=s】
1人问答
问题描述:

大学数学,采纳即追加:设x^2+px+q和x^2+rx+s都是整系数多项式,且它们有一个公根α不是整数.试证p=r,q=s

李建清回答:
  证明:首先假如这两个整系数多项式的另外一个根也相等,显然这两个证系数多项式恒等,显然有p=r,q=s   否则,不防设x^2+px+q的根为α,β,x^2+rx+s的根伟α,γ(β不等于γ)   显然,α+β=-p,----(1)   αβ=q----(2)   α+γ=-r----(3)   αγ=s----(4)   β-γ=r-p为整数   α(β-γ)=q-s为整数   又β不等于γ=>α=(q-s)/(r-p)为有理数   显然(1)(3)可以推出β,γ也是有理数,显然对首项系数为1的二次正系数多项式假如他的根为有理数则它的必定是整数(自己证明的话也不难,假设α=m/n(,m,n为整数,且m,n)=1,n>=2,β=-p-m/n=>q=αβ=m/n*(-p-m/n)不是整数,矛盾),故与α不是整数矛盾,读反设不成立,即原命题成立   证毕!
最新更新
优秀数学推荐
热门数学
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞