连AO并延长交DE于G,
O是△ADE的重心,
∴DG=GE,
∴向量AG=(AE+AF)/2,AO=2AG/3=(AE+AF)/3=λ(AB+AC)/3,
同理,向量OF=(OB+OE)/2,CF=(CB+CE)/2,
向量OB=AB-AO=(1-λ/3)AB-(λ/3)AC,
OE=-EO=-(EA+ED)/3=-(EA+AD-AE)/3=(-AD+2AE)/3=(-λ/3)AB+(2λ/3)AC,
∴OF=(1-2λ/3)AB+(λ/3)AC,
CB=AB-AC,CE=AE-AC=(λ-1)AC,
CF=AB+(λ-2)AC,
正三角形ABC的边长为2,
∴AB^2=AC^2=4,向量AB*AC=2,
∴OF*CF=[(1-2λ/3)AB+(λ/3)AC][AB+(λ-2)AC]
=(1-2λ/3)AB^2+[(1-2λ/3)(λ-2)+λ/3]AB*AC+[λ(λ-2)/3]AC^2
=4[1-2λ/3+λ(λ-2)/3]+2(-2λ^2/3+8λ/3-2)
=0.