十八世纪瑞士数学家欧拉证明了简单的多面体中顶点数、面输、棱数之间存在的一个有趣的关系式,根据以下信息回答问题.
-----------------------------------------------------------------------------------------------------------多面体顶点数面数棱数
四面体446
长方体8612
正八面体6812
正十二面体201230
-----------------------------------------------------------------------------------------------------------
问题:
某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点每个顶点处都有3条棱,设该多面体外表面三角形的个数为a个,八边形的个数为b个,求a+b的值.