当前位置 :
【十八世纪瑞士数学家欧拉证明了简单的多面体中顶点数、面输、棱数之间存在的一个有趣的关系式,根据以下信息回答问题.-----------------------------------------------------------------------------------------】
1人问答
问题描述:

十八世纪瑞士数学家欧拉证明了简单的多面体中顶点数、面输、棱数之间存在的一个有趣的关系式,根据以下信息回答问题.

-----------------------------------------------------------------------------------------------------------多面体顶点数面数棱数

四面体446

长方体8612

正八面体6812

正十二面体201230

-----------------------------------------------------------------------------------------------------------

问题:

某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点每个顶点处都有3条棱,设该多面体外表面三角形的个数为a个,八边形的个数为b个,求a+b的值.

柴苍修回答:
  顶点数(V)、面数(F)、棱数(E)之间存在的关系式知:V+F-E=2和题意知这个多面体的面数为a+b;棱数24*3/2=36条根据V+F-E=2可得24+(a+b)-36=2可得a+b=14
最新更新
优秀数学推荐
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞