sin^2x=1/2(1-cos2x)
sof(x)=2(1-cos2x)+2cos(2x-pi/3)=2+2(cos(2x-pi/3)-cos2x))
=2+2(cos2xcospi/3+sin2xsinpi/3-cos2x)=2+2(1/2cos2x+sqrt(3)/2sin2x)=2+2sin(2x+pi/6)
(1)f(x1)=3,sin(2x+pi/6)=1/2,2x+pi/6=2npi+pi/6or2npi+5pi/6
2x=2npior2x=2npi+2pi/3
x=npiorx=npi+pi/3
(2)f(x)=5/2,sin(2x+pi/6)=1/4
sin2xsqrt(3)/2+cos2x*1/2=1/4
sin2xsqrt(3)+cos2x=1/2
sin2xsqrt(3)-1/2=-cos2x
letsin2x=yandsquarebothsides
(sqrt(3)y-1/2)^2=1-y^2
3y^2-sqrt(3)y+1/4=1-y^2
4y^2-sqrt(3)y-3/4=0
y=[sqrt(3)+/-sqrt(3+12)]/8=[sqrt(3)+/-sqrt(15)]/8
sincexisin[0,pi/2],sin2x>0
sosin2x=[sqrt(3)+sqrt(15)]/8