取Ω:x+y+z≤2,(x,y,z)≥0
∫∫∫Ωxdxdydz
=∫(0,2)xdx∫(0,2-x)dy∫(0,2-x-y)dz
=∫(0,2)xdx∫(0,2-x)(2-x-y)dy
=∫(0,2)x(2y-xy-y²/2):(0,2-x)dx
=∫(0,2)x[2(2-x)-x(2-x)-(1/2)(2-x)²]dx
=∫(0,2)x[(4-2x)-(2x-x²)-(2-2x+x²/2)]dx
=∫(0,2)x(x²/2-2x+2)dx
=∫(0,2)(x³/2-2x²+2x)dx
=(1/2*x⁴/4-2*x³/3+x²):(0,2)
=1/2*1/4*16-2/3*8+4
=2/3