情景再现
通过“活动 思考”一节的学习,小红知道了:把一张长方形纸片按下图要求折叠、裁剪、展开,可以得到由长方形裁剪出的一个最大正方形.
操作探究
聪明的小红在学习了这一个知识后给出了一个“可裁长方形”的定义:当相邻两边长分别为1,a(a>1)的长方形通过上述方法裁剪掉一个最大的正方形后,再在剩下的部分裁剪出一个最大的正方形,如此反复,最后剩下的部分也是一个正方形,像这样一类长方形称为可裁长方形.并进行了以下探索:
(1)当一个可裁长方形只经过一次裁剪就可以得到全部正方形,则a的值为___;
(2)当一个可裁长方形只经过两次裁剪就可以得到全部正方形,则所有符合条件的a的值为___;
(3)当一个可裁长方形只经过三次裁剪就可以得到全部正方形,画出所有符合条件可裁长方形,标注出裁剪线,并在对应的图形下方写出a的值.
方法迁移
取一个自然数,若它是奇数,则乘以3加上1;若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.最少经过下面5步运算可得1,
即:5
(1)自然数12最少经过___步运算可得到1
(2)如果自然数m最少经过7步运算可得到1,则所有符合条件的m的值为___.