当前位置 :
2000年第26届俄罗斯数学奥林匹克十年级决赛试题在矩形桌子上放着许多相等而不重合的正方体纸片,其边都平行桌子的边且被分别染成k(k>=2)种颜色之一.如果考虑任意k个颜色互不相同的正方形
1人问答
八字精批流年运程八字合婚八字起名
问题描述:

2000年第26届俄罗斯数学奥林匹克十年级决赛试题

在矩形桌子上放着许多相等而不重合的正方体纸片,其边都平行桌子的边且被分别染成k(k>=2)种颜色之一.如果考虑任意k个颜色互不相同的正方形,那么它们中都有两个可用一枚钉子钉在桌上.证明:可用(2k-2)枚钉子把某一种颜色的所有正方形全部钉在桌上.

很难的题,很想弄懂,给个100分,

三易巾凡,实在抱歉,你的答案我看得不太懂,能写具体些吗?

李蕊回答:
  对颜色数k作归纳.假设k种颜色编号为C[1],C[2],...,C[k]:   1.k=2,找出桌面上最左端的正方形s,假设它的颜色为C[1],则所有颜色为C[2]的正方形均与之相交,并且这些正方形至少包含s右边的两个顶点之一,从而可以用2个钉子钉住颜色为C[2]的所有正方形.   2.设k=n时命题成立,k=n+1时,同样找出桌面上最左端的正方形s,假设它的颜色为C[n+1],将除s外的所有颜色为C[n+1]的正方形除去,则剩下的k色正方形可以分成两类,一类和s相交(这些正方形至少包含s右边的两个顶点之一),另一类满足:任k个颜色互不相同的正方形,存在两个正方形相交(否则这k个正方形和s组成的k+1个异色正方形两两不相交,矛盾).第一类可用两个钉子钉住,第二类根据归纳假设可用2k-2个钉子钉住其中的某一色正方形,该色正方形即被2k-2+2=2(k+1)-2个钉子完全钉住.
八字精批 八字合婚 八字起名 八字财运 2024运势 测终身运 终身运势 本命年运
已出生未出生
最新更新
优秀数学推荐
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞
复制重新加载
原创不易,您的支持将成为鼓励我的动力
《2000年第26届俄罗斯数学奥林匹克十年级决赛试题在矩形桌子上放着许多相等而不重合的正方体纸片,其边都平行桌子的边且被分别染成k(k>=2)种颜色之一.如果考虑任意k个颜色互不相同的正方形|高中数学问答-字典翻译问答网》
1、付费复制方式
支付宝付费后即可复制当前文章
限时特价:5.99元
原价:20元
打开支付页
2、微信付费复制方式
微信扫码付费后即可复制当前文章
限时特价:5.99元
原价:20元