matlab解二阶微分方程,解出的结果如下,请问怎样画出y和时间t的函数图像?
y=dsolve('101*D2y+100*Dy+1000*y=102*sin(20*pi*t)','y(0)=0,Dy(0)=0','t')
解出的结果是
y=exp(-(50*t)/101)*sin((10*985^(1/2)*t)/101)*((51*985^(1/2)*exp((50*t)/101)*((50*sin(t*(20*pi-(10*985^(1/2))/101)))/101-cos(t*(20*pi-(10*985^(1/2))/101))*(20*pi-(10*985^(1/2))/101)))/(9850*((20*pi-(10*985^(1/2))/101)^2+2500/10201))+(51*985^(1/2)*exp((50*t)/101)*((50*sin(t*(20*pi+(10*985^(1/2))/101)))/101-cos(t*(20*pi+(10*985^(1/2))/101))*(20*pi+(10*985^(1/2))/101)))/(9850*((20*pi+(10*985^(1/2))/101)^2+2500/10201)))-(51*cos((10*985^(1/2)*t)/101)*(99485*pi^2*sin(20*pi*t
-(10*985^(1/2)*t)/101)-(4925*sin(20*pi*t+(10*985^(1/2)*t)/101))/2-(4925*sin(20*pi*t-(10*985^(1/2)*t)/101))/2+99485*pi^2*sin(20*pi*t+(10*985^(1/2)*t)/101)+4925*pi*cos(20*pi*t-(10*985^(1/2)*t)/101)+4925*pi*cos(20*pi*t+(10*985^(1/2)*t)/101)+(25*985^(1/2)*cos(20*pi*t-(10*985^(1/2)*t)/101))/2-(25*985^(1/2)*cos(20*pi*t+