当前位置 :
数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角∠DCG的平行线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思
1人问答
问题描述:

数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角∠DCG的平行线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连结ME,则AM=EC,
易证△AME≌△ECF,所以AE=EF.   在此基础上,同学们作了进一步的研究:
小题1:小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由
小题2:小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.

赖乙宗回答:
  小题1:正确小题2:正确   (1)正确.证明:在AB上取一点M,使AM=EC,连结ME,∴BM=BE. ∴∠BME=45°.  ∴∠AME=135°.∵CF是外角平分线,                             ∴∠DCF=45°. ∴∠ECF=135°.∴∠AME=∠ECF.∵∠AEB+∠BAE=90°,∠AEB+∠CEF=90°,∴∠BAE=∠CEF.∴△AME≌△ECF(ASA).∴AE=EF. (2)正确.证明:在BA的延长线上取一点N,使AN=CE,连接NE.∴BN=BE.∴∠N=∠FCE=45°.∵四边形ABCD是正方形,∴AD∥BE. ∴∠DAE=∠BEA.∴∠NAE=∠CEF.  ∴△ANE≌△ECF(ASA).∴AE=EF.
最新更新
优秀数学推荐
热门数学
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞