当前位置 :
【设矩阵A=1−11x4y−3−35,已知A有三个线性无关的特征向量,λ=2是A的二重特征值,试求可逆矩阵P,使得P-1AP为对角形矩阵.】
1人问答
问题描述:

设矩阵A=

1−11x4y−3−35,已知A有三个线性无关的特征向量,λ=2是A的二重特征值,试求可逆矩阵P,使得P-1AP为对角形矩阵.

刘洋志回答:
  ∵A有三个线性无关的特征向量,λ=2是A的二重特征值,   ∴λ=2对应着两个线性无关的特征向量,   从而:特征方程|2E-A|X=0的基础解系有两个解向量,   则有:r(2E-A)=1,   又:2E−A=11−1−x−2−y33−3   
其它推荐
最新更新
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞