an=[7a(n-1)-3]/[3a(n-1)+1],
an-1=[7a(n-1)-3]/[3a(n-1)+1]-1,
an-1=[4a(n-1)-4]/[3a(n-1)+1],
取倒数得:
1/(an-1)=[3a(n-1)+1]/[4a(n-1)-4],
1/(an-1)=[3a(n-1)-3+4]/[4a(n-1)-4],
1/(an-1)=3/4+4/[4a(n-1)-4],
1/(an-1)=3/4+1/[a(n-1)-1],
这说明数列{1/(an-1)}是等差数列,首项为1/(a1-1)=1,公差为3/4.
1/(an-1)=1+(n-1)•3/4,
1/(an-1)=(3n+1)/4,
an-1=4/(3n+1),
an=(3n+5)/(3n+1).