先看O'Stolz定理
设有数列An,Bn若Bn>0递增且有n-->+∞时Bn-->+∞(以下lim均表示lim(n-->∞))
则有:若lim(A(n+1)-An)/(B(n+1)-Bn)=L(L可以是0,有限数,或+∞(-∞))
==>lim(An)/(Bn)=L
设B(n)=n,A(n)=Sum_{k=1->n}ln[x(n)]
则ln(a)=lim_{n->+∞}{ln[x(n+1)]}=lim_{n->+∞}{A(n+1)-A(n)}/{B(n+1)-B(n)}
由Stolz定理,有
ln(a)=lim_{n->+∞}{A(n)/B(n)}=lim_{n->+∞}{Sum_{k=1->n}ln[x(n)]}/n
=lim_{n->+∞}(1/n)Sum_{k=1->n}ln[x(n)]
=lim_{n->+∞}ln{[x(1)x(2)...x(n)]^(1/n)}
因此,
lim_{n->+∞}[x(1)x(2)...x(n)]^(1/n)=e^[ln(a)]=a