当前位置 :
已知x>0,y>0,z>0,证明x^3/(x+y)+y^3/(y+z)+z^3/(z+x)≥(xy+xz+yz)/2
1人问答
问题描述:

已知x>0,y>0,z>0,证明x^3/(x+y)+y^3/(y+z)+z^3/(z+x)≥(xy+xz+yz)/2

李学明回答:
  如果可以用排序不等式证明的话x^2+y^2+z^2>=x^1.5y^0.5+y^1.5z^0.5+z^1.5x^0.5=2xxy/2(xy)^0.5+2yyz/2(yz)^0.5+2zzx/2(zx)^0.5=xy+yz+zx(2)(1)(2)相加,将(1)的右边移到左边,然后两边同时除以2即得到结论...
最新更新
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞