对于具有相同定义域D的函数f(x)和g(x),若存在函数h(x)=kx+b(k,b为常数),对任给的正数m,存在相应的x0D,使得当xD且x>x0时,总有则称直线l:y=kx+b为曲线y=f(x)与y=g(x)的“分渐近线”.给出定义域均为D=的四组函数如下:
①f(x)=x²,g(x)=根号x;②f(x)=10^(-x)+2,g(x)=(2x-3)/x;
③f(x)=(x²+1)/x,g(x)=(xlnx+1)/lnx;④f(x)=2x²/(2x+1),g(x)=2(x-1-e^(-x)).
其中,曲线y=f(x)与y=g(x)存在“分渐近线”的是
A.①④B.②③C.②④D.③④
(为什么存在分渐近线的充要条件是x→∞时,f(x)-g(x)→0?)