在三角形ABC中,内角A,B,C所对的边分别为a,b,c,已知a≠b,c=根号3,cosA^2-cosB^2=根号3sinAcosA-根号3sinBcosB.
1.求角C的大小.
cosA^2-cosB^2=根号3sinAcosA-根号3sinBcosB
cosA^2-根号3sinAcosA=cosB^2-根号3sinBcosB
cosA(cosAcosπ/3-sinAsinπ/3)=cosB(cosBcosπ/3-sinBsinπ/3)
cosAcos(A+π/3)=cosBcos(B+π/3)
cos(2A+π/3)+cosπ/3=cos(2B+π/3)+cosπ/3
cos(2A+π/3)=cos(2B+π/3)
A=B或A+B=2π/3
已知a≠b所以A+B=2π/3
C=π/3
2.若sinA=4/5,求三角形ABC面积
C=π/3,c=根号3,sinA=4/5,得
a=8/5
cosA=3/5
sinB=sin(A+C)=(4+3√3)/10
三角形ABC面积=0.5*a*c*sinB=(8√3+18)/25