当前位置 :
如图所示,梯形ABCD中,AD∥BC,AB=DC.(1)P,E,F分别是BC,AC,BD的中点,求证:AB=PE+PF;(2)如果P是BC上的任意一点(中点除外),PE∥AB,PF∥DC,那么AB=PE+PF,这个结论还成立吗?如果成
1人问答
问题描述:

如图所示,梯形ABCD中,AD∥BC,AB=DC.

(1)P,E,F分别是BC,AC,BD的中点,求证:AB=PE+PF;

(2)如果P是BC上的任意一点(中点除外),PE∥AB,PF∥DC,那么AB=PE+PF,这个结论还成立吗?如果成立,请证明;若不成立,请说明理由.

汤小川回答:
  (1)证明:∵P,E,F分别为中点,∴PE=12AB,PF=12CD.(三角形中位线定理)∴PE+PF=12(AB+CD).又∵AB=CD,∴AB=PE+PF.(2)成立.∵PE∥AB,PF∥CD,∴PEAB=PCBC,PFCD=PBBC,(平行线分线段成比例定理)∵A...
最新更新
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞