1.取对数:
lnz=(x+y)ln(x-y)
对x求导:z'x/z=ln(x-y)+(x+y)/(x-y),得:z'x=z[ln(x-y)+(x+y)/(x-y)]
对y求导:z'y/z=ln(x-y)-(x+y)/(x-y),得:z'y=z[ln(x-y)-(x+y)/(x-y)]
2.令u=xy,v=xyz
则w=f(x,u,v)
w'x=f'x+f'u*u'x+f'v*v'x=f'x+f'u*y+f'v*yz
w'y=f'y+f'u*u'y+f'v*v'y=f'y+f'u*x+f'v*xz
第二个问的w对x的偏导数之后再对y求的偏导数,二阶的
那复杂多了w"xy=f"xu(x,u,v)*u'y+f"xv(x,u,v)*v'y+f'u(x,u,v)+y[f"uu*u'y+f"uv*v'y]+zf'v(x,u,v)+yz[f"vu*u'y+f"vv*v'y]=xf"xu+xzf"xv+f'u+y[xf"uu+xzf"uv]+zf'v+yz[xf"vu+xzf"vv]
如果明白了求一阶,那求二阶其实只是对一阶再同样求偏导而已,方法是一样的。