当前位置 :
若x,y,z都是正实数,且x^2+y^2+z^2=1,则yz/x+xz/y+xy/z的最小值是多少?
1人问答
问题描述:

若x,y,z都是正实数,且x^2+y^2+z^2=1,则yz/x+xz/y+xy/z的最小值是多少?

齐建军回答:
  yz/x+xz/y+xy/z=(yz/x+xz/y+xy/z)*1=(yz/x+xz/y+xy/z)*(x^2+y^2+z^2)=3xyz+y^3z/x+yz^3/x+x^3z/y+xz^3/y+x^3y/z+xy^3/z>=9xyz   因为x^2y^2z^2
最新更新
优秀数学推荐
热门数学
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞