设tanu=x,secu=根号1⊕x^2
原式=|ln(tanu⊕secu)/(secusecu)du
=|1/(secu*secu)dsecu
=|cos^2udcosu
=1/3*(sinu)^3
=1/3*(x/根号1⊕x^2)^3
先做的不对。设y=ln(x+√(1+x²)),则x=e²/2-e^(-y)/2,dx=e^(-y)/2dy原式=∫y*e^(-y)/2dy=-1/2*y*e^(-y)+1/2∫e^(-y)dy=1/2*(-y-1)*e^(-y)=1/2*(-ln(x+√(1+x²))-1)*e^(-ln(x+√(1+x²)))+C