已知向量a=(根号3sinwx,coswx),b=(coswx,-coswx)(w>0),函数f(x)=ab+1/2的图像的两条相邻对称轴间的距离为π/4..
(1):求函数f(x)的单调递增区间
(2)若cosx>=1/2,x∈(0,π),且f(x)=m有且只有一个实根,则求实数m的值.(1)解析:∵向量a=(根号3sinwx,coswx),b=(coswx,-coswx)(w>0)
又∵函数f(x)=ab+1/2的图像的两条相邻对称轴间的距离为π/4
∴f(x)=a.b+1/2=√3sinωxcosωx-cos²ωx+1/2=√3/2sin2ωx-1/2cos2ωx=sin(2ωx-π/6)
∴T/2=π/4==>T=π/2==>2ω=2π/(π/2)=4
∴f(x)=sin(4x-π/6)
∴函数f(x)的单调递增区间为:
-π/2+2kπ<=4x-π/6<=π/2+2kπ==>kπ/2-π/12