有没有这条公设都不会影响到几何的相容性.
即没有这条平行公设,或者换成其他同类型的公设,形成的几何依然可以成立,即形成的几何本身不会产生矛盾.
一般将没有欧几里得第五公设的几何称为非欧几何
罗巴切夫斯基最早发现的非欧几里得几何,他的这条公设是:
过线外一点,至少有两条直线不与已知直线相交
他认为不相交,就是平行
可以举一个例子,圆内几何,假设几何空间是圆的内部出去边界部分,显然过园内某条直线外一点有无数直线不和这条直线相交.
黎曼在前人基础上建立了更广泛的一种几何叫黎曼几何,其中也举出了一个例子,叫做球面几何.
关于几何基础问题的研究和非欧几何可以看希尔伯特写的《几何基础》,拓扑学以及黎曼几何等相关教材
.