波动光学是光学中非常重要的组成部分,内容包括光的干涉、光的衍射、光的偏振等,无论理论还是应用都在物理学中占有重要地位.粒子在光场或其他交变电场的作用下,产生振动的偶极子,发出次波.用这样模型来说明光的吸收、色散、散射、磁光、电光等现象,甚至光的发射也是一般波动光学的内容.电磁波理论应用到晶体称晶体光学.光波波长约为3.9-7.6×10cm,一般的障碍物或孔隙都远大于此,因而通常都显示出光的直线传播现象.这一时期,人们还发现了一些与光的波动性有关的光学现象,例如F.M.格里马尔迪首先发现光遇障碍物时将偏离直线传播,他把此现象起名为“衍射”.胡克和R.玻意耳分别观察到现称之为牛顿环的干涉现象.这些发现成为波动光学发展史的起点.17世纪以后的一百多年间,光的微粒说(见光的二象性)一直占统治地位,波动说则不为多数人所接受,直到进入19世纪后,光的波动理论才得到迅速发展.
几何光学是光学学科中以光线为基础,研究光的传播和成像规律的一个重要的实用性分支学科.在几何光学中,把组成物体的物点看作是几何点,把它所发出的光束看作是无数几何光线的集合,光线的方向代表光能的传播方向.在此假设下,根据光线的传播规律,在研究物体被透镜或其他光学元件成像的过程,以及设计光学仪器的光学系统等方面都显得十分方便和实用