当前位置 :
【问道数学数理数论题!设:n不等于1.证明:n的k次方再减一可以被(n-1)的平方整除的充要条件是:k被(n-1)整除!】
1人问答
问题描述:

问道数学数理数论题!

设:n不等于1.证明:n的k次方再减一可以被(n-1)的平方整除的充要条件是:k被(n-1)整除!

蒋炯回答:
  n^k-1=(n^(k-1)+n^(k-2)……+1)(n-1)(a);(n-1)^2|n^k-1等价于n-1|n^(k-1)+n^(k-2)……+1;若k被(n-1)整除,则n^(k-1)+n^(k-2)……+1-k=[n^(k-1)-1]+[n^(k-2)-1]……+[1-1];仿造(a),可知每一[]中项均可被n-1整除,从...
数学推荐
最新更新
优秀数学推荐
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞