当前位置 :
一道高二数学题,关于圆与直线已知圆x^2+y^2+x-6y+m=0与直线x+2y-3=0相交于P、Q两点,是否存在实数m,使以PQ为直径的圆经过坐标原点?如果存在,求出m的值,如果不存在,说明理由.
1人问答
问题描述:

一道高二数学题,关于圆与直线

已知圆x^2+y^2+x-6y+m=0与直线x+2y-3=0相交于P、Q两点,是否存在实数m,使以PQ为直径的圆经过坐标原点?如果存在,求出m的值,如果不存在,说明理由.

苏国平回答:
  思路:圆心(-0.5,3),过圆心作直线x+2y-3=0的垂线y=2x+4,交点A为(-1,2),   A点为PQ的中点即圆心,坐标原点为O,则|OA|=根号5   则Q点坐标为(1,1),代入圆x^2+y^2+x-6y+m=0   得到m=3
最新更新
优秀数学推荐
热门数学
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞