单位质量的理想流体在流动过程中,位能、压力能和动能之和守恒.伯努里方程式可以确定流体在不同断面时的参数关系,在工程技术上有着广泛的应用.像实际使用的皮托管、文丘利管、U形差压计等,都是以该方程为理论基础的.方程式理想正压流体在有势体积力作用下作定常运动时,运动方程(即欧拉方程)沿流线积分而得到的表达运动流体机械能守恒的方程.因著名的瑞士科学家D.伯努利于1738年提出而得名.对于重力场中的不可压缩均质流体,方程为p+ρgh+(1/2)*ρv^2=c式中p、ρ、v分别为流体的压强、密度和速度;h为铅垂高度;g为重力加速度;c为常量.上式各项分别表示单位体积流体的压力能p、重力势能ρgh和动能(1/2)*ρv^2,在沿流线运动过程中,总和保持不变,即总能量守恒.但各流线之间总能量(即上式中的常量值)可能不同.对于气体,可忽略重力,方程简化为p+(1/2)*ρv^2=常量(p0),各项分别称为静压、动压和总压.显然,流动中速度增大,压强就减小;速度减小,压强就增大;速度降为零,压强就达到最大(理论上应等于总压).飞机机翼产生举力,就在于下翼面速度低而压强大,上翼面速度高而压强小,因而合力向上.据此方程,测量流体的总压、静压即可求得速度,成为皮托管测速的原理.在无旋流动中,也可利用无旋条件积分欧拉方程而得到相同的结果但涵义不同,此时公式中的常量在全流场不变,表示各流线上流体有相同的总能量,方程适用于全流场任意两点之间.在粘性流动中,粘性摩擦力消耗机械能而产生热,机械能不守恒,推广使用伯努利方程时,应加进机械能损失项.个人见解,