当前位置 :
若函数f(x)=ax^2+20x+14(a>0)对任意实数t,在闭区间[t-1,t+1]上总存在两实数m,n,使得|f(m)-f(n)|>=8成立,则实数a的最小值?
1人问答
问题描述:

若函数f(x)=ax^2+20x+14(a>0)对任意实数t,在闭区间[t-1,t+1]上总存在两实数m,n,使得|f(m)-f(n)|>=8成立,则实数a的最小值?

程永生回答:
  f(x)的图象是开口向上的抛物线,欲使在闭区间[t-1,t+1]上总存在两实数m,n,使得|f(m)-f(n)|>=8成立,只需t=-10/a时f(t+1)=f(t)≥8   即a(t+1)^2+20(t+1)+14-(at^2+20t+14)≥8   2at+a+20≥8,a≥8   所以a的最小值为8
最新更新
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞